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The method of extension of a differential operator is carried over to systems of 

second-order parabolic linear differential equations. The problem of the anal- 

ytical design of regulators with controls by boundary functions is’reduced by 

means of the method of extension of a differential operator to a problem with 
distributed controls and is solved by the dynamic programming method. 

In the theory of partial differential equations it is well known fl] that linear 
homogeneous equations with inhomogeneous boundary conditions are essentially 
equivalent to inhomogeneous equations with homogeneous boundary conditions. 

This can be shown by the method of extension of a differential operator [2-41. 
Using delta-functions and their derivatives a linear homogeneous equation 

with inhomogeneous boundary conditions can be written as an inhomogeneous 
equation with homogeneous boundary conditions when certain continuity and 
differentiability conditions are fulfilled. In the case when the boundary cond- 

itions are the control functions, the inhomogeneous equation obtained can be 

treated as an optimal problem with distributed controls. 
An analytical solution was obtained in [3,4] by this method for the problem 

of bringing a rod’s temperature upto a specified temperature distribution in a 

fixed interval of time with minimal energy, and an example with controls 

bounded in absolute value, analyzed earlier in [S], also was examined. 
The analytical design problem for regulators for partial differential systems 

with distributed controls was considered in [6,7]. Problems with boundary- 

function controls were studied in p-91. 

1. Let Q be an open connected bounded subset of an m-dimensional Euclidean space, 
with the coordinate vector s = (st,. . . , 

- 
s,).Let.Q denote the closure of set Q,and ,o 

the boundary ofQ,The symbol x = co1 llzl,..,(. z,,fl will denote a column-matrix. 
We consider a controlled plant described by 
equations: 

au/at = Lu (s, t) 

The initial conditions for system (1.1) have 

u (s,O) = uo (9) 

the following system of partial differential 

(aEQ,r,>p) (1.1) 

the form 

(aEB,r=o) (=? 

The boundary conditions may be of two kinds: 
1’ first boundary value problem 

548 
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u (s, C) = f, (9, $1 (sEo,t>o) (1.3) 

2” second boundary value problem 

Bu (s, t) = fs (9, C) (sEo, t>(J) (i 4 

Here u (9, tj is the state vector of the system, f, (s, t) (a = 1,2) are boundary 
control functions, L and B are linear differential operators defined by the following 

relations: 

% uit = at’ 
au, 

UjP = as 9 UfP9 ‘= 

PI&, 

P 
& 88 p 9 , (a& = t$ 

9 

In these relations np are the direction cosines of the outward normal to the boundary 
o of region ei a# are twice continuously differentiable functions, a$ ,are contin- 

uously differentrable functions, aij .and pit are continuous functions of argument 8. In 

relations (1.5), as well as subsequently, pairs of like indices imply summation. 

Summation over the indices j, j, .k, v and p, is carried out from one to ,n, while over 
the indices p, q, l and 6 from one to m.Summation is not carried out over indices which 
indicate the number of relations in the writing of the formulas (in the given case, i). 

Those initial distributions us (s)for which system (1.1) with controls f= G 0 (a = 
= 1,2). has a unique solution twice-continuously differentiable in s are said to be 

admissible. The square matrix Q (s, s’) = 1 Qij (s, a’)~tnsymmetrlc with respect to 
S and 9' is said to be positive definite if 

5 s ut (s) Qtj (5, ~‘1 q (0 tm-m > 0 (v (8) +o) 
cru 

for any continuous squareGntegrable VectolLvaIued functiorrv (8) =col gVi (n),...,~~ (s)& 

We assume that the boundary w of region $?, can be split up into a finite number of 

(m - 1)- dimensional hypersurfaces such that the tangent hyperplane to each of them 
varies continuously from point to point, and we suppose that we know the equation of 
boundary o so that 

cp (4 = 0 (9 E.4 (1.6) 

In the case of a prob_lem over an infinite time interval we are given the functional 

J (I = 
s 

IV,&, w, = w(r)‘+ WJ’) (a = & 2) (1.7) 

In the case of a problzm over a finite time interval we take the functional J=* in the 

following form: * 

Jd = s Iv,& + Iv@) (aai,W (1.8) 
0 

Here 
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W(l) = u ut (~0 Qtj (se0 q (s’, 0 dQ a’ (l-9) 
n 

w,w = s Q#‘) (8) far’ (8, t)dm (Qr) (s) > 0; B E o; i = i,..., n;’ a = 1,2) 

l 

WCS, = 

ii 

ut (s, 7) Q,,* (s, 8’) uJ (s’, 5) dh2 dP’ 
a 

The square matrices 

are assumed to be positive definite, continuous and symmetric in s and 8’. 

The functions f, (s, t) (a = 1,2) continuous in s and t such that in the case of a 

problem over a finite time interval, J,’ < 00, while in the case of a problem over an 

infinite time interval, Ja < 00 and the solution of system (1.1) is asymptotically 

stable in measure [6] 

are called admissible controls. Here u’ is the vector transpose to the vector U. 
Let us assume that system (1.1) has a unique solution for any admissible initial dist- 

ribution and any admissible control. The analytical design problem for regulators for 

system (1.1) with the functional J, (Ja’) consists of seeking among the admissible 

controls the functions fa,” = f,’ [u] (a = 1,2), which yield the minimum of the functional 

J, (J,‘) under any admissible initial distributions 16, ‘71. The controls f,” (a = 1,2), 
. 

which solve the problem posed are said to be optimal. 

2. The method of extension of a differential operator, as applied to the system (l.l)- 
-(1.4) being considered, consists of the following p]. We introduce an operator A and 
the operatord”adjoint to it: 

A(*) = (&L)(.). A*(.)=(- G-L*) (0) (2*1) 

where Z*.is the operator adjoint to operator L.The domain D (A) of operator A is the 
set of all functions u (8, t) satisfying the following conditions: 

UEH, AuEHH, u(fhO) = 0, SED 

(2.2) 

u(s, t) = 0 (Bu(s, t) = O), S E w, t>o 

where H is a Hilbert space. The operator A * has the domain D (A *)which is the set 

of all functions v (s, t), satisfying the following conditions: 

VEii, A*v Elf, V(S,i)+O for L--rot, sea 

V (s,1) = 0 (Cv (s, 1) = O), SEW, t>o (2.3) 

Here C is a boundary differential operator which for a given Bean often be defined in 
such a way that the operators A and A* are adjoint to each other. The explicit form 
of the operator c for B given by formula (1.5) will be determined below. 

In the Hilbert spaceH we introduce the scalar product 
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(x, y) = 7 s, ;;‘ydQdt 
0 

(2.4) 

where g denotes the complex conjugate of x. For all u E D (A)and all v IZ D (A *) 

the relation 
(Pv, u) = (v, Au) (2.5) 

is valid. The method of extension of a differential operator consists in the introduction 

of another operator Al with a domainD (A,) broader than D (A).Namely, as D(A,) we 
take the set of all functions w (s, t) satisfying all the conditions imposed on D (A), 
excepting that w (s, t) (Bw (s, t)) does not necessarily vanish when S E o.The 

scalar product (A* V, W) can be used to determine the operator A,. We require that 

(A*v, w) = (Y, A,w) (2.6) 

By a Green’s formula transformation and an integration by parts of the left-hand side of 
relation (2.6). we can obtain an expression for operator n ,,which contains delta funct- 

ions and their derivatives. 

Everything said above is valid also for the case of a finite time interval [O, r], except 
for the obvious changes in the definition of scalar product (2.4) and in the third condi- 
tion in (2.3). 

The problem of the analytical design of regulators with boundary controls can be re- 

duced with the aid of the method of extension of a differential operator to a problem 
with distributed controls. Here the homogeneous system (1.1) with nonzero (inhomo- 
geneous) boundary conditions becomes an inhomogeneous system with zero (homogen- 
eous) boundary conditions. 

3. Using the realtion (2.5) for determining 4%. we have 

Au=col~~A,u;...,A,u~ 

AtU = U{f -U$qZhjpp -UijPujp - aijUJ (x EQ, t>o, i = i ),..( n) 

Let us assume for the moment that u, (8) G 0. By substituting Ausinto the right-hand 
side of relation (2.5) and by using Green’s formula, an integration by parts, and the 
zero (homogeneous) boundary conditions, we obtain 

(v, Au) = 3 i v,*A,udSldt = j i vi (utl - u&,~,, - u&,- a,p,)dQdt - 
0 0 

-1 i (UjCjv + viB,U) dodt + 7 1 Aj+V*ujdQdt= 1 i A,*V*ufiQdt = (A’V9.C) 

cv=coi,c,v,...& 

0 

A*v = co1 0 Al+, . . . t &*v 1 

cjv = {a&%iq + (p{J - 1) (at - (aG*),) vi} np (i a 19~**at n) 

Aj*V = - Vj, - (apjpu,)pq +(aiPjU,)p-a~jui 0'=L.*~~) 

Thus we have obtained explicit expressions for operators A* andC, 

(s)b 
, 

Let h (s)and g e continuously differentiable scalar functions. 
The following formula is valid: 

(34 
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s h*oJk(w@ = - s h (4 (6, (cp W g (8) + 6 (‘p @)I gq (4) dQ = 
m a 

= - s h(s) (6 (‘p @)I g b)),dQ (3.2) 
n 

Here, a subscript Q denotes differentiation with respect to the argument aa, summation 

over index q is understood, q) (8) is the left-hand side of Eq. (1.6) defining boundary 

0 9 6 (cp W) and a0 (cp (8)) are delta functions defined by the relations 

~WWg@W’J= &@)do, ~s,(cp(s))g(B)dQ = - [g,(s)do (3.3) 
LI a n m 

To determine an explicit expression for operator d e we use relation (2.6). By 

substituting A* V from (3.1) into the left-hand side of relation (2.6) and by using 

Green’s formula and an integration by parts, after manipulations we obtain 
CO 

(A%, W) = 
Ji! 

(- VIM - (d~~&q + (@dp - atjvd to,dQdt 31 
0 

a0 

= 
ss (.u*Bp*-- 
OU 

WjCjV) d&t + 5 i V{ * A,WdQdt 

Here we have assumed thatw (s, 0) G 0 (8 E E).In the case of the first boundary 

value problem we use the boundary Conditions 

v(a,t)=O* w(f3,t)=fds,t) (sEo* t>o) 

Formula (3.2) is obtained in the following form: 

m 

P 

SC 
vt (A,w + h,) d62dt = (v, A,w) 

Ori 

h = co1 n&, . . . , h, 11, 4 -’ <g (cp) 4%%)q (L = I,..., n) (3.4) 

A,w = co1 1 Aelw, . . . , A,,w 1, Aerw = A,w + h, (I = i,..., n) (3.5) 

In the case of the second boundary value problem, by using the boundary condition 

cv=o, Bw=f* (BE% t>o) 

we obtain 
m m 

(A*v, w) = \ s &d&t -I- 5 1 (Aiw 4 6 (cp) f,,) dQdt = 
dU 0L-l 

Aew = Aiw + 6 (cp) fa ‘(1 -is..., n) 
In the case of the first boundary value problem it is obvious that system (l.l)-(1.3) is 
equivalent to the system 
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au/at = Lu - b (SE@ r>q (34 

U(& 0) = uo (4 (8 E ii, t = O), uk,t)=O (SEro, r>o) 

In the case of the second boundary value problem the system (1. l), (1.2). (1.4) is equi- 
valent to the system 

au/at = Lu - 6 (cp) f, (SE!& f>O) (3.7) 

u (40) = WI (5) (9 E a,. t.= O), Bu(s, t) 3: 0 hew t>o) 

We rewrite W(s) (a a = 1,2)in the following form: 

wp’ = s 6 (cp) QXdQ (a = 1.2) (3.8) 

The modified form obtained for describing the original problem permits us to use the 
dynamic programming method for solving the analytical design problem for regulators 

with boundary controls in just the same way as in the case of a problem with distributed 

controls [S, 71. 

Note 3.1. In the case when the boundary controls act only on a certain part of 

boundary o, the function cp(s)should be equal to zero on this part of the boundary and 
should not vanish outside it. In the case when different control functions are applied to 

different parts of the boundary. Eqs. (3.6) and (3.7) will contain several terms of form 

(3.4) in the right-hand sides. 

4. We consider the analytical design problem for controllers over an infinite interval 
in the modified form obtained in the preceding section. Assuming. that the principle of 

optimality [lo] is valid, in accordance with the dynamic programming method we intro- 

duce the following functionaL 
OD 

II, [u(s, t)] = tiin, s W,dq (a=i,2) 

: 

Having applied the formalism of the dynamic programming method, for the determin- 

ation of & Iu (a, t)] we obtain the following functional equation: 

mint, {IV= +6,lL[u(f%~)l~}=O (a=i,2) (4.1) 

Here the second term within the braces is the variational derivative of the functional 

IT, with respect to u in the directionau / at(see DO] for example). Assume that the 
functional& [i (p, t)]has the following form: 

R&l:@% q1 = 1 \u’(s, ~}rs,(s,8’)U(s’;t)ds2dQ’ (a = I, 2) 
I1 &i 

wherep, (S, s’)(a = 1,2)is a positive-definite ( 11 x n)-manix symmetric with 
respect to 6 and S’ Since in what follows it will always be clear from the text which 
of the boundary value problems (first or second) we have in mind, for simplicity we 
drop the index a in the notations I& and P,.Using Green’s formula and the symmetry 

of the matrix P (s, s’), we obtain the followmg results: 
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- h)’ Pu + u’P (Lu - h)} d!G? dQ’ = (4.2) 

= {u’L$Pu - 2h’Pu) dQ dS2’f $ [ g,‘udodQ’+ \ 5 u’g&-Jdo’ 
0 n” do 

LSP (9,s') =L!*P(s, 9’) + L,**P (5,s’) 

L,*P (8, s’) 7 II L,*Pj PI”9 Lag*@ (999’) = jj Lr*jp’ llln 

pj = g plj9 * * * 9 pn, // (j = is..., n)v P’ = B PiI9 - * * , p,,g ’ (1 = 1 ,...,n) 

LZPj = (aRp,j)pq - (af~Pkj)3, + aklPIcj (1, j=I,..., n) 

cf*jp’ z (f$~P&~q~ - (atjPi&’ + akipik (I, j = i,..., n) 

g1 = CO1 JIk!lI, * ’ ’ dlna9 ga = CO1 II g219 l l -3 gatkU 

tfli = p,Bu - U’CP, (i = i,..., nj gsi = P’BU - U’CP’ (i = i,..., n) 

(lpj = CO1 A C#jy . . . , C,pj 11 (i = I,..., n), CP’ = CO1 11 C,P’, * * * 7 Cmp’I( (i = I,..., n) 

COPE = {d! (P& + @ki - 1) (& - (dP)q)PkjI np (i, j = i,..., n) 

Cjp’ = {“f$ (Pik)q’ + (f&i - 1) (Ufj - (a!$‘P*kJ nP’ (I, j = i,..., n) 

(d), ‘= w: (Ws,, (UQ),~ = aug (s’)/tk,‘, . . . 

Using expressions (1.9) and (3.8) for @I’ and wra’, from (4.2) we get 

mint, 
(SF 

(U’ (GdP + Q) U - 2h'PG) do dg’ + 
nd 

S 8 ((P) Qj(‘)~ll*dSZ + 
.n 

+U 
g,‘udodSY + =o 

tri SS U’gadQdZ’ (4.3) 
no I 

By substituting here h from (3.4) we find the function fi”, which minimizes the left- 
hand side of equality (4.3). By omitting terms not containing function f,, in coordin- 

ate notation we have 

By writing out in detail the derivative with respect to Q and next using formula (3.2) 
and properly (3.3) of delta function’8 (q);we obtain 

By equating the variational derivative with respect to fr, to zero, we find the optimal 
control 

f1r” (fh 4 = - & at* (8) np (Pit (4 S’)>, uk (a’, 1) dQ’ 
j S 

n 
(SEW, t>O, i=i ,..., n) (4.4) 
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By substituting (4.4) into (4.3) and by prescribing the boundary conditions for the matrix 

P (8,8’) in such a way that the two boundary integrals in (4.3) vanish, we obtain the 
following matrix equation for determining P (III, a’) : 

L,:~P + Q - f’(l) =o (sEn,esEQ’), P(l) (St 9') = 1 Pj j(l) (8 9 8’) li: 
p,j(f) (a, 8’) = 5 np44pz (8”) (PO (89 0~ - 

m 

Q& (Pvj (8’9 e’)@* ac (s3 Wdo 

P(s,s’)eO (sEs,s’Ew P.(s,e')=O (BE$dE@‘) 

2. Second boundary value problem. Having carried out analogous 
calculations, we obtain the following equation for determining the matrix P (8, 8’): 

L;,eP + Q - P@) =o (sEs4dEP’), PC’) (9, 8’) = 1 Pi;’ (8, B’) h” 

PC’ (~3 s’) E= 5 P, (Bv 8”) *I Ppj (B’v 9’) da 

- 

cpj=o (aE(u;I’E~‘;i=i,...*n) CP’ FO (sEB;r’EPO’;Iai,...,n) 

The optimal control has the following form: 

Pj, (s, I’) uk (8’) t) dQ’ (sEo;r>O;i=i,. ..,n) (4.5) 

5, Let us consider the problem over a finite time interval. We introduce the follow- 
ing functionalr 

~=~u~s.r),ll~rnln,.ij~*~~~} (a*iJl) (5.1) 

For Qle determination of & [u (8, t), tl (a = i&e obtain the equation 

- + = IniIIf, (~a+&t&IU(fht)9~1.$} (a-&2) 

Setting :t - *km (5.1) we get 

n.~o(8,~)m1= I@” (a=i,2) 

Assumt that the so&t&n of the functional equation has the form 

fI, ru (a, 0, fl cI: 
!I\ 

d(~,t)P,(e,e’,t)u;(s’,t)dsZdB’ (a=i,2) 

where P, ,(s, B’, t) (a e 1,2) is a square ( n X tb)-matrix symmetric with respect 
to B and B’.h just the same way as in the preceding section we find that the optimal 

controls f ao and fso have the forms (4.4) and (4.5). respectively, on the interval 
LO, ~1, while for the determination of the matrices P, (6, B’, C) (a = 1,2)we obtain 

the following equations: 
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1. First boundary value problem, 

- aP/at = Lf,qP + Q - Pcu (s E 8, 11’ E ia’, t E [O, ?)I 

P(s,s’, 1) = 0 (SE (O,dr3Y,fE[O,7.))9 P(B,S’J)=O (8ESit ll’Ed,~E[O,7)) 

P (8, s’, T) = Q’ (s, s’) (sEjii,s’Eri’,t=7) 

2. Second boundary value problem. 

- aP/at = L:.P + Q - p”’ (s E n, 8’ E a’, 1 E IO, 7)) 

cpj=o (a(=o;s’EV’; tE[O,7);i=-i....*n) 

CP’ =o (sE~;s’ECp’;tE[O,r);L=l,....n) 

P (s, s’, 7) = Q’(s, 8’) (SEV, 8’6IL r=7) 

6. EXAmpb. Consider the problem of regulating a rod’s temperature over a finite 
time interval: 

+/at = tiWUliW (O<r<i, O<t67) (6.5) 

I+, 0) = U&) (O<r<&:=O), U(& t)=o, U(b t)=f(:) (O<!(7) 

where u(s, 1) is the temperature mismatch, f(t) is the control. We take the functional 

to be minimized in the form (1.6). where * 
11 

w(l) s 
ss 

u (a, t) Q (8,~‘) u (a’, 1) duds’, w(‘) 3 j*(t) 

00 

@‘I = f f u (8, .7) Q’ (8, a’) u (I’, 7) dads’ 

00 

Having determined the explicit form of operator .A,, we rewrite (6.1) in the following 

way: 

aqat = d g - a%’ (5 - i) f (t) 

U(I, 0) =I I&), u(O, t):= uti, t) = 0 

Here a’(r - i)is the derivative with respect to 36 of the delta function J)(a - 1). As 

before, the functional P has the form (1.8), however, Wt2) is rewritten as 

@‘) = 5’ (t) 5 6 (I - i) do 

0 

Assume that II[u(r, f), tlhas the form 

n [n (3, :), r] = 5 5 u (8, :) 4’ (8, .s’, 2) II (a’, L) dsds’ 
00 

With due regard to the zero boundary conditions for P(r, I’, t), the following equation: 

11 1 

m ‘.nf udsds’ + 1’ 
s 

6(8-i)ds+C!a*f x 

0 
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x i i 6’ (8,- i) Pudsdd) = 0 
00 

corresponds to Eq. (4.3). The optimal control has the form 

u (s’, 1) dr’ 
8-l 

(6.2) 

(6.3) 

Having substituted (6.3) into (6.2), we find the equation forP(r, s’, t): 

_ $= as ($+ $)+Q_e, @(;?VW/,*_t 

(0 < s < i, 0 < s’ < i, 0 < t < r) 
P(s, P’, 1) = 0 (I = 0, i; 0 < I’ 6 1; 06t<‘C) 

P(s, 1’) t) = 0 (O<r(i; I’ = 0,i; 0 Q t < z) 

P(r,‘_r’* T) t: Q’ (8, s’) (0 < s Q i, 0 ( a’ Q i, t = ?) 

In the case being considered the operator Ls has the form 

L; (.) = a’ 
( 
gi+&) (*) 

We seek P(r, I’, ‘t)in the form of an expansion in the eigenfunctions of operator L,*,,: 
P (81 I’, t) = A B (1) sin an8 sin @rsg 

Here and subsequently the summation wr %l respect to the indices a, fi, Q, and y_rs (6.4) 

carried out from one to 00. 
Let Q;(s, r’) and 0’ (8, s’) have the following eigenfunction expansions: 

Q (8, 8’) = qag sin am sin @x8', Q’ (8, 8’) * q&Sin ens SlnpJts’ (6.5) 

To determine the coefficients Aai., (t) we obtain the following system of ordinary 
Ricatti differential equations 

-dA,aldt = qaa - a%s (aa + 0’) A QB - ad{- l)“+‘ayn’A,,Ay8 

(0 ( t < r; a, .B = 1,2,...) 

A,j3 (7) = qXs.- .(t = r; a, fi = 1.2,. . .) 

For practical purposes we restrict ourselves to a finite number of terms in expansions 
(6.4). (6.5). In the case when we restrict ourselves to just one term in expansions 

(6.4) (6.5), we obtain the following equation for the determination of A,,(t): 

:-dAllldt = qIl - 2aWA,i - aWAn’, A,,(r) = qn’ 

Its solution has the form 

Ali (t) = b + 
1 

bl + be*(‘) ’ 

bl = - 
a’ 

2 (1 + aab) ' 
bx: i ----_~li 

qnT - b 
I# (t) = 21x% (i + orb) (T - t) 

The author thanks A. M. Letov for useful discussions. 



V. P. Khatskevich 

BIBLIOGRAPHY 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

Courant. R, and Hilbert, D., Methods of Mathematical Physics, 
Vol.1. New York, Interscience Publishers, Inc., 1953. 

Friedman, B., Principles and Techniques of Applied Mathematics. New 

York, J. Wiley and Sons, Inc., 1956. 

Brogan, W. L., Optimal control theory applied to systems described by 

partial differential equations. In: Advances in Control Systems. Vol. 

6. New York - London, Academic Press, 1968. 

Brogan, W. L., Dynamic programming and a distributed-parameter maximum 

principle. Trans. ASME, Ser.D:J. Basic Engrg. Vol. 90, No.2, 1968. 

Butkovskii, A. G., A maximum principle for optimal systems with distr- 

ibuted parameters. Avtomatika i Telemekhanika Vol. 22, No. 10,196l. 

Sirazetdinov. T. K., On the analytical design of regulators in distributed- 

parameter processes. Avtomatika i Telemekhanika Vol. 26, No. 9.1965. 

Sirazetdinov. T. K., On the analytical design of regulators in distributed- 

parameter processes. Tr. Univ. Druzkby Narodov im. P. Lumumby. 

Vol. 27. 1968. 

Sirazetdinov, T. K., On optimal co112rol of elastic aircraft. Avtomatika 

i Telemekhanika, No. 7, 1966. 

Erzberger. H. and Kim, M., Optimum boundary control of distributed- 
parameter systems. Information and Control Vol. 9, No. 3, 1966. 

Bellman, R., Dynamic Programming. Princeton, N. J. , Princeton Univ. 

Press, 1957. 

Translated by N. H.(:. 


